

 ©2021 IEEE

Open Redirects, Proxies, and
LinkShim: The Issue Facebook

Doesn’t Want You To Think About

Matt McMahon
Computer Science

Department George
Mason University
Fairfax, Va. USA

https://orcid.org/0000-
0002-8303-5481

Abstract—URL Wrapping or ‘link shimming’
is a process where websites redirect traffic
through an intermediary endpoint. Engineers
employ this technique for navigation security,
privacy, and analytical purposes. This paper will
outline the general purposes of link shimming,
then will go into detail of how Facebook
implements their own LinkShim system and
vulnerabilities of the past. Finally a shortcoming
of the Facebook LinkShim system will be
explored and possible mitigation strategies will be
offered.

Keywords—Cyber Security, SecDevOps,
LinkShim, CWE 601: Open Redirects, URL
Wrapping

I. INTRODUCTION
Ever since the first BBS servers the internet

has brought people together and created social
networks. During the turn of the millennium
advances in graphics and networking enabled the
rise of more advanced social media applications.
Facebook, and later Instagram, came to dominate
the US social media market. Now in 2021 both
platforms are almost ubiquitous in modern life.
Consumers not only connect with friends, but stay
informed of news, watch entertaining content and
make purchases through the various platforms.

Due to the concentration of potential assets
within a social media account for an attacker to
exploit, social media accounts are frequently
targeted by attackers. Through social media
accounts attackers can login to other linked
accounts that may have payment information. Some
have payment information saved directly to their
social media account for in-application purchases.

Frequently once an account is compromised,
the attacker will impersonate the victim and request
cash (through apps like Cashapp) to be sent because
of contrived emergencies purported by the attacker.
“My car broke down I need money for groceries” is
a common request. Attackers also pretend to be the
victim’s friend and promote various schemes such
as requesting the victims send them money and they
promise to return substantially more money, “send
me $200 I’ll send you $2000, it’s my your old Pal
Frank Kindergarten.”

An Instagram user warns his friends of mailicous
links in October 2021 [McMahon2021]

Facebook and it’s child companies have

taken a concerted effort in identifying and
preventing cyber attacks. One area of focus has
been preventing XSS, XSRF, open redirect and
other attacks through the use of malicious links. In
2019 there was an increase of cyber attacks through
social media. During the pandemic this trend
continued as people were forced to make ends meet
through other means, and more turned to cyber
crime.

Facebook has developed their own in-house
system for filtering links called LinkShim. While
linkShim has enhanced its filtering capabilities
since its development, there is still room for
improvement. This paper will outline linkShim’s
development, vulnerabilities, and possible
mitigation strategies.

II. CONTEXT

A. Development of LinkShim

Facebook has it’s own proprietary version of
handling redirects with it’s own implementation
of URL wrapping; the project at Facebook is
called linkShim. In 2008 LinkShim was first
created [Elsobky2014].

There are three general reasons why
linkShim was developed at Facebook
[Facebook2012]. First was the need to
anonymize referrer links. Before Facebook
implemented their own linkShim advertisers and
trackers were able to determine exactly which
user clicked on a link. This is because Facebook
referrer header contains the UserID of the user
clicking the link. By channeling the user’s traffic
through an intermediary endpoint, the third party
cannot determine the user who clicked on the
link, only that the user is coming from Facebook.

The second general reason for creating the
LinkShim system is for analytical purposes. Every
click is tracked and the data is attached to both the
user’s advertising profile and that of the link. This
way Facebook can track which links are being
clicked, by who, and how frequently
[Facebook2020].

The third reason for implementing the
LinkShim URL wrapping system at Facebook is for
security purposes. All links in Facebook, or it’s
affiliated companies like Instagram or WhatsApp,
pass through the LinkShim filter.

Facebook LinkShim doesn’t filter links
dynamically or in real time. Instead the method
compares the link to a database of existing known
malicious links. The reason why LinkShim can’t
scan in real time is because by comparing links
against a database, malicious URLs can be
identified, added to the database, and links that have
not been opened can be retroactively blocked.

Facebook can retroactively block links that
have been sent to users by having a database and

not dynamic filtering. This is especially helpful for
email messages or other services that have been
sent but not necessarily opened immediately.

In 2020 Facebook improved LinkShim by
actively scanning links before they are clicked by
the user, not just scanning their header or URL. Per
the Facebook documentation “we now check every
link on the page before it's sent to the browser.”
This is computationally intensive and will be
touched on later in this paper after past
vulnerabilities are outlined.

III. VULNERABILITIES
Every year Facebook publishes the names of

a few hundred individuals who have collected the
Facebook bug bounty[Facebook2021]. Ever since
LinkShim was created people have been finding
exploits.

One of the most successful researchers has
been Paulos Yibelos, who found three during a six
month stretch in 2015.

Vulnerability Lab Search
Engine[Vulnerability2021]

A. Yibelos Exploits

The first time Yibelos bypassed LinkShim was
in 2014. He did so by altering the URL from a
Facebook mobile feed story. The URL had a
‘continue’ parameter that could be altered by the
client and was not checked at all by Facebook.

https://m.facebook.com/feed_menu/?story_fbid=808015282566492&id=100
000740832129&confirm=h&continue=../http://evilzone.org&perm&no_fw=1
&_rdr

Fig. 1: The URL with Payload highlighted in
yellow

 The second Bug Yibelos found is not
relevant to securing LinkShim and how to prevent
future attacks because the method is not possible.
Now all of Facebook cookies are encrypted and
tampering with them is much more difficult than in
2014. In 2014 Yibelos used a restricted account (60
day) and changed ‘name’ and ‘service’ updates by
using a session tamper. While this is tangentially
relevant it does not exploit open redirects but
instead is XSRF attack where client data can be
changed.

For the third exploit, Yibelos leveraged the fact
that Facebook had been sanitizing LinkShim URLs
by comparing them against a database. To quote
Yibelos “the payload needed to be a valid & safe-
URI, but with our payload.” Therefore the first
exploit was done by creating a JS alert and payload
all in one line that looks like a URI[Yibelos2016].

javascript://google.com/?x=%0Aalert`Hi!`;document.body.firstElement
Child.children[0].firstElementChild.firstElementChild.nextElementSi
bling.nextElementSibling.nextElementSibling.children[2].children[1]
.firstElementChild[4].click

Fig 1. The JS alert is in grey while the DOM

payload is highlighted in yellow

Paulos Yibelos’s contributions are important to
note from a methodological standpoint. He
essentially focused on DOM manipulation to
circumvent LinkShim. The next researcher was able
to bypass LinkShim in another way.

B. Anees Khan

Anees Khan is a researcher who has also collected
the Facebook bug bounty by bypassing LinkShim in
a new way than before. After Anees Khan’s report,
the way of bypassing LinkShim outlined is the most
common way LinkShim is still bypassed.

Anees Khan showed that by using a link
shortener attackers could bypass the LinkShim

protections[Khan2017]. A link shortener changes
the URL of a given link into a new URL. Therefore
since LinkShim relies on a database of blacklisted
URLs, a link shortener can provide an endless
number of cheap and easy to create ‘backdoors.’
This is a really pernicious problem because there is
not an easy fix. The version of LinkShim that Khan
was able to exploit is essentially the same version of
LinkShim that is operating today, 4 years later. As
mentioned earlier, as of 2021 LinkShim now
supposedly visits and scans links before they are
clicked. This is computationally expensive but
possibly the only way to prevent such an attack.

C. 2017-2021 LinkShim BugBounties

In 2017 Elsallamy found that LinkShim could be
bypassed by substituting ‘.’ Instead of ‘/’ in the URI
scheme. This bug was recorded but no bounty was
paid for it[Elsallamy2017].
In 2018 the security group Servicenger found an
unsecured endpoint using
fb://webview[Servicenger2018].
https://mbasic.facebook.com/a/feed_menu.php?story_fbid=xx&id=10000xx&m
enu_id=u_0_0&continue=fb%3A%2F%2Fwebview%2F%3Furl%3Dhttps%3A%2F%2Fevil
zone.org&action=us&gfid=xx

In 2020 Neilmark Ochea found the push

notifications endpoint was not secured. The URL
could have a payload set to the ‘ref’ value
[Ochea2020].

“https://facebook.com/notifications
/client/push/enabled/?ref=

Since the push notification endpoint was not
properly sanitizing URLs it would be possible for
an attacker to pass in a malicious URL without
being detected.

D. Personal Exploration

The Bug Bounty Report that got me thinking the
most was Khan2017 because it was the most
simple. Just by changing the URL an attacker can
pass in a malicious URL to a Facebook user and
bypass the LinkShim filter. I wondered how these
attacks could be prevented since this is potentially
such a large vector for attack.

Another way to prevent these attacks is to
prevent all 3xx types of redirects. 302 redirects are
temporary redirects while 301 redirects are
permanent. I created an s3 bucket on AWS and
provisioned it to act as a static website. Then I set
the bucket to function as a permanent redirect to a
URL, a 301 redirect.

S3 bucket with proxy redirect

The s3 bucket with 301 redirect returned a

the basic linkShim error. This showed me that
LinkShim was preventing both 301 and 302
redirects.

Classic LinkShim Error Message

I wanted to see if I could reproduce
Khan2017 by using a URL shortener. To my
surprise most mainstream URL shorteners did not
work with Facebook (Bit.ly/ Google/ Twitter).

Internal Error Message when Using Mainstream

Shorteners

After trying mainstream link shorteners I
started to try smaller ones. Trying other shorteners
and proxies would sometimes return
DNS_PROBE_FINISHED_NXDOMAIN error.

The reason why the NXDOMAIN error is

coming is because the two IP address from the link
are not matching up. The internal 404 errors from
the link shortening sites is from something inside
those sites that is preventing the routing. A regular
proxy may return a the header information from the
proxy site, and then LinkShim is picking up that
info.

1) In Browser Proxy

An ‘in-browser’ proxy is a type of proxy that
does not record the HTTP header of the destination
URL to the client. Headless proxies are proxies that
do not load the GUI for a webpage. Headless
proxies are often used for web-scraping because it’s
harder for a server to detect a bot is scraping the site
because the security headers can be spoofed or are
just missing. A CSP header or Content Security
Header is the most particular for telling the browser
(and server) which resources to load (or pass
through). A regular HTTP-header may have a
‘Referrer Policy’ or there may be a standalone
‘Referrer Header’.

By Using a headless browser we are decreasing

the surface area for LinkShim to scan the link and
determine if it’s safe. Per Khan’s contribution, we
can reuse the victim’s hash value because Facebook
reuses hashes for users.

https://l.facebook.com/l.php?u=https%3A%2F%2Fnl.hideproxy.me/go.php?u=xtMPQJshbOpUCtSEbkzN

HhU%3D&b=29%3Flr86‐1%26fbclid%3DIwAR1CtMz5K0CNu0VHya8CPVMO7kz1Y2c5G‐i5‐vY_OTJxoydu‐

VZU_43Mk2Y&h=AT3BWDOyLdfrclIteQJ3IZHqnBgWTT‐

lb4W2ieLRZUKl0lVC_DJ3zmNXuu6XPbNz9YnFRU6Ds2_AzgzFZwbB6QT01mYFqCZVcADtEaR5l010WR_L2G

AzSVg7CDgtanoM2G4&__tn__=*I&c[0]=AT1BqcEaY_BEzI8T‐OG‐yupZ_6rm88yyQ8nv6G7YKa4wN2oM‐

n39MnCz0STKC3Dzr4nk_U4JUyTP3qvX66SxAAVyqf7TZF_YnQdSKe4GIMZnk9iAJLXy72DvivzgNCoJZgJ61gC

AWAoL6v_Z3mBdaGvdSjSitM0rhWw6lNb8XZXhjqI9oYtOl‐bqv7jTPukS5ODRnRiSErhOOMTC654YyVvx7w

My Endpoint, Payload, and Hash

Following the above URL will route us through
Facebook LinkShim and to a malicious site.

EvilZone.org is recommend to test Facebook
because it’s listed as a known malicious URL. If

you are able to travel to evilzone.org then you were
able to pass through LinkShim.

IV. MITIGATING TECHNIQUES
Facebook considers all open redirects using

LinkShim to be sanitized. According to the Facebook
Whitehat Education documentation “If LinkShim is
used, we do not consider an issue a valid open
redirect” [Facebook Whitehat2021]. There is an
entire section in the false positive section of the bug
bounty explaining types of false positives for open
redirects bypassing LinkShim. Using a short URL is
considered a false positive.

This makes total sense because Khan already
collected that bounty in 2017. Also logically an
attacker could ‘layer’ shortened links to achieve
obfuscation. Even if Facebook searched one ‘layer’
deep the attacker could add another ‘layer’ and
always be out of reach. In this same vein URLs not
being normalized is also not accepted as evidence of
bypassing LinkShim. Also a cracker could link to an
infected website and then launch the open redirect
attack from the infected site.

Most particularly Facebook explicitly states that
methods that obfuscate or hide the IP address of
malicious sites are not considered valid exploits.

Even though using an IP address obfuscation
method like a proxy are not suitable for collecting a
bounty from Facebook, there are still valid security
concerns that could be addressed.

A. Checking HTTP Headers More Thoroughly

One mitigation technique Facebook could
employ would be to more thoroughly vet HTTP
headers. If a request is missing a referrer header or
CSP header that should be a red flag. Second if the
referrer/ CSP header is from a list of known proxies
or link shortening sites than the request can be
denied. It appears as though Facebook and the
major link shortening companies have come to an

internal agreement (bit.ly links return internal 404
errors.) Perhaps the major in-browser proxy
companies can come to a similar agreement where
their headers are known and flagged. Even though
this will not stop all attackers it will eliminate a
significant portion of attackers who have limited
technical skills. Like Facebook said, if an attacker
wanted to link to an infected site or layer shortening
methods there is little to no recourse, but scanning
Headers could decrease the total number of attacks.

B. GeoFencing

Many malicious open redirect requests come
from phishing campaigns [Li2021]. Many phishing
campaigns involve geographically separated
attackers and victims. By geofencing links to
certain clusters it may be possible to ‘contain’ the
spread of malicious links.

One possible implementation of geofencing
LinkShim could be allowing links as they are
currently, but only for a specific geographic
location. Then once the link is clicked a waiting
period, or ‘quarantine’ begins. If after a set period
of time the link appears benign, then it is able to be
shared more widely over the network.

C. One-Time Hashes

 The LinkShim system relies on two parts, the
URL (u=) and the hash value (h=). If the hash values
were not reused then these attacks would become
much more difficult to perform.

One time hash values would be more difficult to
stop because the act of revealing the hash would
render it useless. Currently a user shares a link, the
other user will be warned that the link is to an external
site because the sender and receiver’s hash value do
not match. To really run a secret open redirect on a
Facebook user you need to first gain their hash value.
This could be gained from links that they have shared
previously. If the hash values were one time only then
previously shared links could not be used to create

payloads that would appear to the user as if they are
coming from themselves.

V. THE FUTURE OF LINKSHIM
Since it’s development in 2008 LinkShim is

a powerful tool of the modern web. LinkShim
protects users’ privacy while also providing
valuable data to website operators such as
Facebook. Most importantly LinkShim provides
security against XSS, XSRF, open redirect and
other attacks involving malicious links.

LinkShim does a good job at preventing the
spread of malicious links but it could improve.
Currently LinkShim considers any type of URL
obfuscation method to bypass LinkShim a false
positive. This appears to be negative thinking
because though there are not ways to entirely
prevent the transmission of malicious links, it could
be possible to reduce the number of links through
the implementation of certain methods. In particular
if more thorough header scanning was
implemented, then the use of proxies that obfuscate
or remove header information could be diminished
and the overall security of Facebook and it’s
corresponding sites would be improved.

ACKNOWLEDGMENT

I would like the thank Dr. Wheeler for giving me
the opportunity to write this paper. I would also like
to thank the Interdisciplinary Center for Economic
Science for allowing me to manage their social media
and become more aware of social media
vulnerabilities.

REFERENCES

[1]

[Jaran202] S. Jaran, “Open-redirect on Facebook (Bypass
LinkShim),” Medium, Feb. 16, 2020.

https://dwisiswant0.medium.com/open-redirect-on-facebook-
bypass-linkshim-4050f680d45c (accessed Oct. 22, 2021).

[2]
[Yibelos2016] P. Yibelos, “Instagram Stored OAuth XSS,”
Paulos Yibelo - Blog, 2016.
https://www.paulosyibelo.com/2016/11/instagram-stored-
oauth-xss.html (accessed Oct. 22, 2021).

[3]
[AWS2021] AWS, “Configuring a webpage redirect -
Amazon Simple Storage Service.”
https://docs.aws.amazon.com/AmazonS3/latest/userguide/how
-to-page-redirect.html (accessed Oct. 22, 2021).

[4]
[Yibelo2015] P. Yibelo, “Facebook: Another LinkShim
Bypass,” Paulos Yibelo - Blog, 2015.
https://www.paulosyibelo.com/2015/03/facebook-another-
linkshim-bypass.html (accessed Oct. 24, 2021).

[5]
[Facebook2012] Facebook, “Link Shim - Protecting the
People who Use Facebook from Malicious URLs,” Link Shim
- Protecting the People who Use Facebook from Malicious
URLs, 2012.
https://www.facebook.com/notes/10157814493891886/
(accessed Oct. 24, 2021).

[6]
[FacebookEngineering2020] Facebook Engineering, “A faster,
better link shim,” 2020.
https://m.facebook.com/nt/screen/?params=%7B%22note_id
%22%3A10158791573417200%7D&path=%2Fnotes%2Fnote
%2F&_rdr (accessed Oct. 24, 2021).

[7]
[Scheme2011] “Scheme/Host/Port: Referrer (sic),” 2011.
https://www.schemehostport.com/2011/11/referer-
sic.html?fbclid=IwAR0-
bh8ZOXUKei21ggprBcWlYfUfxB1bvHi88aIqxaj8bhNQGZF
pTSV2wmE (accessed Oct. 24, 2021).

[8]
[FacebookWhitehate2021] “Thanks! | Facebook,” Bug Bounty
Program, 2021. https://www.facebook.com/whitehat/thanks/
(accessed Oct. 24, 2021).

[9]
[Elsobky2014] A. Elsobky, “On Evading Facebook’s
LinkShim Mechanism,” 2014.
http://0xsobky.github.io/evading-facebook-linkshim/
(accessed Oct. 24, 2021).

[10]
[Vulnerability2021] “VULNERABILITY LAB SEARCH
ENGINE - SECURITY VULNERABILITY RESEARCH
LABORATORY - VULNERABILITY DATABASE.”
https://www.vulnerability-
lab.com/search.php?page=1&search=facebook (accessed Oct.
24, 2021).

[11]
[Vulnerability2015] “Facebook Bug Bounty #19 - Filter
Bypass Vulnerability,” Facebook Bug Bounty #19 - Filter
Bypass Vulnerability, 2015. https://www.vulnerability-
lab.com/get_content.php?id=1381 (accessed Oct. 24, 2021).

[12]
[Yibelos2014] Yibelos, “Facebook Bug Bounty #17 - Migrate
Privacy Vulnerability,” Facebook Bug Bounty #17 - Migrate
Privacy Vulnerability, 2014. https://www.vulnerability-
lab.com/get_content.php?id=1370 (accessed Oct. 24, 2021).

[13]
[Yibelos2014] Yibelos, “Facebook BB #18 - IDOR Issue &
Privacy Vulnerability,” Facebook BB #18 - IDOR Issue &
Privacy Vulnerability, 2014. https://www.vulnerability-
lab.com/get_content.php?id=1371 (accessed Oct. 24, 2021).

[14]
[Khan2018] A. Khan, “How I bypassed Facebook’s LinkShim
Protection.,” Medium, Apr. 02, 2018.
https://medium.com/@aneeskhan/how-i-bypassed-facebooks-
linkshim-protection-a0ad4c494575 (accessed Oct. 24, 2021).

[15]
[CWE2021] “CWE - CWE-601: URL Redirection to
Untrusted Site ('Open Redirect’) (4.5).”
https://cwe.mitre.org/data/definitions/601.html (accessed Oct.
24, 2021).

[16]
[Elsallamy2021] S. Elsallamy, “Rolling around and Bypassing
Facebook’s LinkShim protection on iOS,” Seekurity, 2017.
https://seekurity.com/blog/2017/07/26/seif-
elsallamy/general/rolling-around-and-bypassing-facebook-
linkshim-protection-on-ios (accessed Oct. 24, 2021).

[17]
[Ochea2020] N. Ochea, “Facebook Push Notification
LinkShim Bypassed,” Medium, Dec. 2020.
https://infosecwriteups.com/facebook-push-notification-
linkshim-bypassed-385fe471516 (accessed Oct. 24, 2021).

[18]
[Servicenger2021] servicenger, “Facebook: LinkShim
protection bypass using fb://webview - SERVICENGER,”
2018. https://servicenger.com/mobile/facebook-linkshim-
protection-bypass-using-fb-webview/ (accessed Oct. 24,
2021).

[19]
[Li2021] F. Li, “Shim Shimmeny: Evaluating the Security and
Privacy Contributions of Link Shimming in the Modern
Web,” 2020, pp. 649–664. Accessed: Oct. 24, 2021. [Online].
Available:
https://www.usenix.org/conference/usenixsecurity20/presentat
ion/li-frank

[20]
[Detectify2021] Detectify, “A guide to HTTP security headers
for better web browser security,” Detectify Blog, Feb. 05,
2019. https://blog.detectify.com/2019/02/05/guide-http-
security-headers-for-better-web-browser-security/ (accessed
Oct. 24, 2021).

[21]
[Whitehat2021]Facebook Whitehat, “Facebook Whitehat
Education,” 2021.
https://m.facebook.com/whitehat/education/false-positives/
(accessed Oct. 24, 2021).

[22]

[Hawe2021] “Alice in Warningland: A Large-Scale Field
Study of Browser Security Warning Effectiveness | USENIX.”
https://www.usenix.org/conference/usenixsecurity13/technical
-sessions/presentation/akhawe (accessed Oct. 24, 2021).

[23]
[Seebug2021] “List of bug bounty writeups.”
https://paper.seebug.org/802/ (accessed Oct. 24, 2021).

[24]

[LinkShim2021] “Link Shim - Protecting the People who Use
Facebook from Malicious URLs.”
https://m.facebook.com/nt/screen/?params=%7B%22note_id
%22%3A10157814493891886%7D&path=%2Fnotes%2Fnote
%2F&_rdr (accessed Oct. 24, 2021).

[25]
[McMahon2021]M. K. McMahon, linkShim. 2021. Accessed:
Oct. 28, 2021. [Online]. Available:
https://github.com/mkMcMahon/linkShim

